Dichotomous Markov Noise Technique to Model Wind Power Uncertainty in Microgrid Operation

Amin Kargarian PhD Student Mississippi State University

Introduction

- Probabilistic behavior of the wind power generation brings many challenges in power systems operation and control.
- How to model wind power uncertainty?
- How if there is no PDF and we have only actual hourly wind speed forecast?
- How about in hour-ahead system scheduling?

- Dichotomous Markov Noise (DMN) is defined as a two-valued stochastic process with the state space values A_± with constant transition frequencies of f_±, for the increase (+) and decrease rate (-) with the appropriate probabilities p_±(t).
- The switches of a(t) are Poisson process.

• Differential equations

$$\frac{d}{dt} \begin{pmatrix} p_+ \\ p_- \end{pmatrix} = \begin{pmatrix} -f_+ & f_- \\ f_+ & -f_- \end{pmatrix} \begin{pmatrix} p_+ \\ p_- \end{pmatrix}$$

 By using the initial values p₊(0)=1 and p_(0)=0, the solutions are calculated as follows:

$$p_{+}(t) = \frac{f_{-}}{f_{-} + f_{+}} + \frac{f_{+}}{f_{-} + f_{+}} e^{-(f_{-} + f_{+})t}$$

$$p_{-}(t) = \frac{f_{+}}{f_{-} + f_{+}} - \frac{f_{+}}{f_{-} + f_{+}} e^{-(f_{-} + f_{+})t}$$
For electricity innovation

• Defining the average acceleration as:

$$\overline{a}(t) = a_+ p_+(t) - a_- p_-(t)$$

• The average acceleration and the equilibrium point can be calculated as:

$$\overline{a}(t) = \frac{a_+ f_- - a_- f_+}{f_- + f_+} \left(1 - e^{-(f_- + f_+)t} \right) + v_+ e^{-(f_- + f_+)t}$$

• Thus the equilibrium point of the system is characterized by $a_{\perp}f_{\perp} - a_{\perp}f_{\perp}$

$$\lim_{t \to \infty} \bar{a}(t) = A = \frac{a_+ f_- - a_- f_+}{f_- + f_+}$$

Microgrid Operation

• Minimizing operating cost

 $Min \quad OC = \sum_{\forall i} F(P_i) + \lambda P_{u,m}$

$$\begin{split} P_{Gb} - P_{Db} &= P_b(\theta, V) \quad \forall b \qquad \qquad Q_{Gb} - Q_{Db} = Q_b(\theta, V) \quad \forall b \\ P_i^{min} &\leq P_i \leq P_i^{max} \quad \forall i \qquad \qquad Q_i^{min} \leq Q_i \leq Q_i^{max} \quad \forall i \\ Q_C^{min} &\leq Q_C \leq Q_C^{max} \quad \forall C \qquad \qquad V_b^{min} \leq V_b \leq V_b^{max} \quad \forall b \\ /S_l(\theta, V) / \leq S_l^{max} \quad \forall l \end{split}$$

S.t.

Microgrid Operation

• Minimizing Energy Loss

$$Min \quad EL = \sum_{\forall i} P_{Gi} - \sum_{\forall b} P_{Db}$$

• Minimizing Voltage Profile Deviation

$$Min \quad VPD = \sqrt{\sum_{\forall b} (V_b - V_{b,desire})^2}$$

Microgrid Operation

• Multiobjective Cost Function

Min
$$SMCF = \sqrt{\beta(\frac{OC - OC^*}{OC^*})^2 + \gamma(\frac{EL - EL^*}{EL^*})^2 + \mu(\frac{VPD - VPD^*}{VPD^*})^2}$$

- where OC*, EL*, and VPD* are the minimum accessible values for OC, EL, and VPD.
- Parameters β , γ , and μ are weighting factors adjusting the impact of different terms in the objective.

Case Study

Case Study

$$f_{+} = 4$$
 $f_{-} = 4$
 $a_{+} = 12$ $a_{-} = 9$

- Applying the DMN model, the expected wind acceleration is +1.5.
- The wind speed is in overall speed increasing class.
- The expected wind speed is calculated to be 14.75 (m/s).
- Using the power curve of the wind turbine, the power provided by this renewable generation source is 1.5 MW.

Case Study

Bus Voltage and Active of the MG

Due Ne		Angle
BUS NO.	voitage (p.u.)	(rad/sec)
B1	1.06	0.000
B2	1.00	-0.059
B3	1.04	-0.047
B4	0.96	-0.105
B5	0.96	-0.059
B6	1.01	0.025
B7	1.01	-0.030
B8	1.04	-0.056
B9	0.99	-0.081
B10	0.99	-0.073
B11	1.02	-0.030
B12	1.00	-0.072
B13	1.06	-0.028
B14	1.00	-0.041
B15	0.96	-0.080
B16	0.96	-0.089
B17	1.05	0.029

at ILLINOIS INSTITUTE OF TECHNOLOGY

Active and Reactive Power produced by Generation Sources

Gen. Sources	P (MW)	Q (MVar)
Upstream Grid	1.53	0.30
DG1	0.31	0.88
DG2	1.12	0.01
DG3	0.49	1.08
DG4	2.48	0.18
DG5	0.75	1.07
Wind turbine	1.50	-1.10

Objective functions value

Operating cost	Energy loss	Voltage profile deviation index
\$631 2	372 KW	0.028

Conclusion

- DMN technique can be applied to model wind power fluctuation in hour-ahead system scheduling.
- Actual forecasted wind speed is modeled in the OPF.
- DMN can model the uncertainty when there is no access to PDF of the uncertain variable.
- This method provide only one scenario for wind speed.
- As the future works, DMN technique can be applied to forecast wind speed, and the state of the system during the future operation hours.

Thank you!

